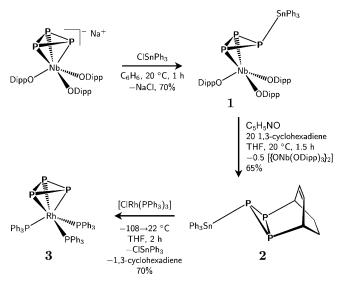
Phosphorus Chemistry

DOI: 10.1002/anie.200906633

Shuttling P₃ from Niobium to Rhodium: The Synthesis and Use of Ph₃SnP₃(C₆H₈) as a P₃⁻ Synthon**

Brandi M. Cossairt and Christopher C. Cummins*


Seeking new methods for phosphorus incorporation directly from its molecular elemental form, P4, we have begun to focus on cyclo-P₃ complexes as a versatile class of intermediates. [1-3] Although it is well-documented that a common result of P₄ activation by transition metal complexes is replacement of a single vertex of the P₄ tetrahedron by an ML_n fragment, such cyclo-P₃ complexes were not recognized for their potential as phosphorus transfer agents until recently. [2-4] Accordingly, anionic cyclo-P₃ complexes of niobium have been shown to serve as sources of P₃³⁻ upon stoichiometric treatment with suitable tripositive electrophiles, including acid chlorides, leading to triphosphabutadiene intermediates,^[2] or AsCl₃, leading to AsP₃.^[3,5] Herein, we illustrate a new approach to phosphorus transfer chemistry with a P₃⁻ synthon, the Ph₃SnP₃(C₆H₈) molecule, that is both nucleophilic at phosphorus and capable of losing neutral 1,3-cyclohexadiene upon treatment with an appropriate P₃⁻ acceptor. The Ph₃SnP₃-(C₆H₈) molecule is itself obtained in an efficient three-step sequence involving P₄ activation, functionalization with triphenyltin chloride, and pyridine-N-oxide-elicited triphosphirene elimination in the presence of 1,3-cyclohexadiene (Scheme 1).

Facile access to $[Na(THF)_3][(\eta^3-P_3)Nb(ODipp)_3]$ (Dipp = 2,6-iPr₂C₆H₃), a convenient source of P_3^{3-} , is gained through reduction of the complex $[Cl_2Nb(ODipp)_3]$ in the presence of white phosphorus. [3,6,7] The anionic nature of this cyclo- P_3 -niobium complex imparts demonstrable nucleophilic character at the P_3 ring, allowing for reaction with a range of mild electrophiles. [1,3] Treatment of $[Na(THF)_3][(\eta^3-P_3)Nb(ODipp)_3]$ with Ph_3SnCl results in loss of NaCl and formation of $[(\eta^2-Ph_3SnP_3)Nb(ODipp)_3]$ (1; Scheme 1). The ^{31}P NMR spectrum of 1 consists of a single sharp singlet at -235 ppm with $^{117/119}Sn$ satellites $^{1}J_{^{119}Sn,P} = 336$ Hz, $^{1}J_{^{117}Sn,P} = 321$ Hz (Figure 1a). This sharp singlet is indicative of circumambulation of the Ph_3Sn moiety about the cyclo- P_3 ring. $^{[1,8-10]}$ Variable-temperature NMR spectra obtained as low as -90°C reveal no locking out of this movement on the NMR timescale.

The niobium-phosphorus interaction in **1** may be regarded as side-on coordination of a diphosphene (RP= PR) to a strongly π-donating d² {Nb(ODipp)₃} fragment.^[11] To

[**] We gratefully acknowledge the US National Science Foundation (grant CHE719157) and Thermphos International.

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.200906633.

Scheme 1. Transfer of the P_3^{3-} fragment from niobium complex 1 to rhodium complex 3 via 2. Dipp = 2,6-diisopropylphenyl.

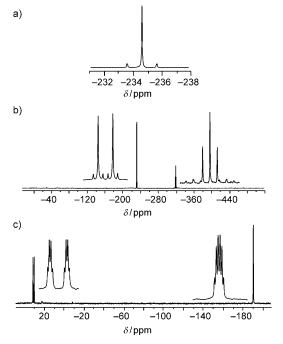


Figure 1. ^{31}P NMR spectra of a) 1 (C_6D_6), b) 2 (C_6D_6), and c) 3 ([D_8]THF) collected at 20 °C.

liberate the triphosphirene molecule P₃SnPh₃ from niobium, complex **1** was treated with a stoichiometric amount of pyridine-*N*-oxide in the presence of excess 1,3-cyclohexa-

 ^[*] B. M. Cossairt, Prof. C. C. Cummins
 Department of Chemistry
 Massachusetts Institute of Technology
 77 Massachusetts Avenue, Cambridge, MA 02139 (USA)
 E-mail: ccummins@mit.edu

Communications

diene;^[12] the latter serves as a trapping agent. This procedure results in formation of the desired Diels–Alder adduct $Ph_3SnP_3(C_6H_8)$ (2) together with 0.5 equiv of the known niobium oxo dimer [{ONb(ODipp)_3}_2] (Scheme 1).^[13] Compound 2 was isolated in 65 % yield by filtration as it selectively precipitated upon concentration of the ethereal reaction mixture. Conveniently, compound 2 could also be prepared directly in a single pot, without isolation of complex 1, in an overall yield of 64 % over the two steps.

The ^{31}P NMR spectrum of **2** features a sharp doublet and a sharp triplet flanked by $^{117/119}Sn$ satellites centered at -234 ppm ($^{2}J_{117/119}Sn,P}=105$ Hz) and -321 ppm ($^{1}J_{117/119}Sn,P}=736$ Hz), respectively (Figure 1b). $^{[1]}$ X-ray quality crystals of **2** were grown from a saturated THF solution at -35 °C (Figure 2). $^{[25]}$ The Sn1-P3 interatomic distance is 2.528(1) Å, which is typical for a Sn-P single bond, and the olefin double

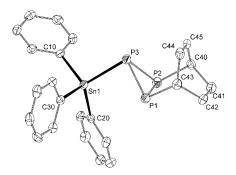


Figure 2. Solid-state structure of 2 with ellipsoids set at 50% probability. Hydrogen atoms are omitted for clarity. [20]

bond is found between C44 and C45 with a distance of 1.330(6) Å as compared with the C41 to C42 interatomic distance (1.549(6) Å). As can be seen in both the ³¹P NMR spectrum and the crystal structure for compound **2**, only a single isomer is observed owing to the endo effect arising from secondary orbital interactions with P3 during the cycloaddition reaction. This appears to be a general feature of this class of cycloaddition products.^[12]

The reaction between complex 1 and C₅H₅NO in the presence of 1,3-cyclohexadiene (20 equiv) was monitored by ³¹P and ¹H NMR spectroscopy in toluene. At room temperature, the reaction was found to proceed rapidly with no observable intermediates; the disappearance of ³¹P NMR resonances for 1 was concomitant with appearance of those assigned to 2. However, when the reaction was monitored at -10 °C, complex 1 was consumed, giving rise to a single new species with a ^{31}P NMR resonance at $\delta = -170$ ppm. This species appears stable at -10°C for several hours and was identified by ¹H and ³¹P NMR spectroscopy as the C₅H₅NO adduct of [(η²-Ph₃SnP₃)Nb(ODipp)₃], **1**-ONC₅H₅. This adduct precipitated from toluene solution as a pink powder when held at -10°C for several minutes and it was necessary to gently warm the reaction mixture to resolubilize the complex and monitor its conversion to 2. Accordingly, upon warming to 30°C, conversion of 1-ONC₅H₅ into compound 2 was observed with no other major species growing in.^[7] These observations suggest that C₅H₅NO binding is the rate-determining step in the formation of compound **2** at 20°C.

The outcome of the reaction of 1 with C₅H₅NO in the presence of 1,3-cyclohexadiene is rationalized by loss of a free triphosphirene, that is, a species with a cyclo-P₃ unit bound in an η¹ fashion to the Ph₃Sn fragment.^[14,15] To study the feasibility of such a hypothesis, we turned to calculations to investigate the possible conformations of the proposed Ph_3SnP_3 intermediate; both $(\eta^1-P_3)SnPh_3$ and $(\eta^3-P_3)SnPh_3$ structures were considered. Despite the fact that six-coordinate tin is relatively common, [16] all attempts to optimize the (η³-P₃)SnPh₃ structure resulted in convergence to the (η^1-P_3) SnPh₃ form, which is structurally very similar to 2 but without diene. The P=P distance in this intermediate was calculated to be 2.019 Å whilst the P-P distances average to 2.250 Å. The one short Sn-P interaction falls at 2.622 Å whereas the distances from the tin center to the phosphorus atoms of the diphosphene average 3.884 Å. This outcome suggests that the reactive (η¹-P₃)SnPh₃ intermediate does indeed harbor a free diphosphene unit, and this P=P moiety does not interact appreciably with the tin center.^[7] To gain a further sense of the chemical nature of the transient (η^1-P_3) SnPh₃ intermediate, we investigated its fate in the absence of an added chemical trap. ³¹P NMR spectroscopic analysis and elemental analysis suggest that (η^1 -P₃)SnPh₃ cleanly oligomerizes to $(Ph_3SnP_3)_r$; however, both the value of x and the connectivity of this oligomer is unknown, and work is in progress to better characterize this interesting species.^[7]

Compound **2** harbors many desirable properties as a potential P₃⁻ transfer agent. First, there is a reactive P–Sn bond, which can be cleaved with elimination of Ph₃SnCl.^[17,18] Furthermore, the cyclic olefin that was installed by trapping the P=P unit with 1,3-cyclohexadiene acts as a protecting group for that reactive moiety, as it has been shown that retrocycloaddition reactions are accessible for such protected diphosphenes.^[19]

As a proof of principle that **2** would be able to serve as a source of P_3^- in reaction chemistry, **2** was treated with 1 equiv of [ClRh(PPh₃)₃] (Wilkinson's catalyst; Scheme 1). GCMS and 1H , ^{31}P , and ^{119}Sn NMR spectroscopy gave evidence for loss of Ph₃SnCl and 1,3-cyclohexadiene in a 1:1 ratio. Following diethyl ether extraction of the crude reaction mixture, the sand-colored complex $(\eta^3-P_3)Rh(PPh_3)_3$ (**3**) was isolated in pure form.

The ³¹P NMR spectrum of **3** has a doublet of quartets for the phosphane P atoms ($\delta = 31$ ppm, $^1J_{^{103}Rh,P} = 150$ Hz, $^2J_{P,P} = 16$ Hz) and an overlapping pair of quartets for the cyclo-P₃ moiety ($\delta = -191$ ppm, $^1J_{^{103}Rh,P} = 32$ Hz, $^2J_{P,P} = 16$ Hz; Figure 1c), which is quite similar to values reported for $[(\eta^3 - P_3)Rh(triphos)]$ (triphos = CH₃C(CH₂PPh₂)₃), which was obtained via P₄ activation as described by DiVaira and Sacconi. [21] X-ray quality crystals of **3** were grown by vapor diffusion of Et₂O into a concentrated solution of CH₂Cl₂ at -35 °C (Figure 3). [25] Complex **3** displays a symmetric cyclo-P₃ unit in which the Rh–P4,P5,P6 interatomic distances average to 2.374 Å and the Rh–P1,P2,P3 interatomic distances average to 2.420 Å.

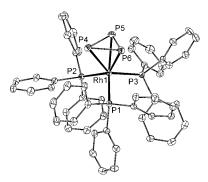


Figure 3. Solid-state structure of 3 with ellipsoids set at 50% probability. Hydrogen atoms are omitted for clarity.^[20]

In the course of this study, it was found that [Na(THF)₃]-[(η^3 -P₃)Nb(ODipp)₃] can transfer a triphosphorus unit to Wilkinson's catalyst on its own via the bimetallic complex [(Ph₃P)₃Rh(μ_2 : η^1 , η^2 -P₃)Nb(ODipp)₃] with loss of NaCl; however, the subsequent elimination of **3** and formation of the niobium oxo complex using C₅H₅NO is neither as efficient nor as clean as is the P₃⁻ transfer with compound **2**.^[7] The use of compound **2** as a source of P₃⁻ is a new method for accessing phosphorus-containing molecules. The method used for the synthesis of **3** bears close relation to the installation of a nitrido functional group using deprotonated 2,3:5,6-dibenzo-7-azabicyclo[2.2.1]hepta-2,5-diene (DBABH) as an N⁻ source with loss of anthracene.^[22] A defining feature of the P₃⁻ transfer reaction yielding **3** is the conversion of rhodium from the +1 into the +3 formal oxidation state.^[23,24]

It is of note that compound **2** should also be a viable source of an unusual phosphanido ligand by loss of Ph_3SnX with retention of 1,3-cyclohexadiene, or potentially as a bulky phosphane ligand with coordination to Lewis acidic centers at the tin-bound phosphorus atom with retention of both diene and triphenyltin. One of the most attractive properties of compound **2** is its modular synthesis from $[Na(THF)_3]-[(\eta^3-P_3)Nb(ODipp)_3]$. The Ph_3Sn^+ moiety can be replaced by other electrophiles, including Ph_3C^+ , Ph_3Si^+ , and Me_3Si^+ , by the salt-elimination procedure. The diene reaction partner is similarly variable in the second step of the synthesis. This modularity will allow the assembly of a library of P_3^- transfer reagents that have widely varied reactivity properties.

Experimental Section

General experimental details and the syntheses of $[(\eta^2-Ph_3SnP_3)Nb(ODipp)_3]$, $[(\eta^2-Ph_3CP_3)Nb(ODipp)_3]$, $[(\eta^2-Ph_3SiP_3)Nb(ODipp)_3]$, and $[(\eta^2-Me_3SiP_3)Nb(ODipp)_3]$, details of the direct reaction of $[Na(THF)_3][(\eta^3-P_3)Nb(ODipp)_3]$ with $[ClRh(PPh_3)_3]$, and an updated synthesis of $[Na(THF)_3][(\eta^3-P_3)Nb(ODipp)_3]$ are given in the Supporting Information.

2: $[Na(THF)_3][(\eta^3-P_3)Nb(ODipp)_3]$ (1.5 g, 1.57 mmol) was dissolved in Et₂O (50 mL). Ph₃SnCl (604 mg, 1.57 mmol) was then added to this solution with stirring. The reaction mixture was allowed to stir for a further 1 h, after which time the reaction mixture was filtered through a plug of Celite into a fresh reaction flask. 1,3-cyclohexadiene (2.5 g, 31.3 mmol) was added to the filtrate, and then solid C₅H₅NO (149 mg, 1.57 mmol) was added with vigorous stirring. The reaction

mixture was stirred for a further 1.5 h, during which time it took on a golden yellow color. The reaction mixture was then concentrated to half the original volume under reduced pressure, resulting in precipitation of an off-white powder. This powder was isolated on a glass frit and was washed three times with Et₂O (10 mL) and dried to constant mass, resulting in pure Ph₃SnP₃(C₆H₈) in 64 % yield (529 mg, 1.01 mmol). X-ray-quality crystals of this material were afforded by recrystallization using 1:1 toluene/THF at -35 °C. Elemental analysis (%) calcd for C₂₄H₂₃P₃Sn: C 55.11, H 4.47, P 17.36; found C 54.91, H 4.47, P 17.76. ¹H NMR (C_6D_6 , 500 MHz): $\delta = 1.25$ (m, 4 H), 2.43 (m, 2H), 5.27 (m, 2H), 7.18 (m, 9H), 7.77 ppm (m, 6H). ¹³C NMR (C₆D₆, 126 MHz): δ = 22.8 (s), 29.2 (m), 118.4 (m), 128.1 (s), 129.0 (s), 129.4 (s), 137.7 ppm (s). ${}^{31}P$ NMR (C₆D₆, 202 MHz): $\delta = -235$ (d, 2P, ${}^{1}J_{PP} =$ 163 Hz, ${}^{2}J_{117/119}S_{n,P} = 105$ Hz), -321 ppm (t, 1 P, ${}^{1}J_{P,P} = 163$ Hz, ${}^{1}J_{117/119}S_{n,P} = 163$ 736 Hz). ¹¹⁹Sn NMR (C_6D_6 , 186 MHz): -88 ppm (dt, ${}^1J_{{}^{119}\text{Sn,P}} = 739$ Hz, $^{2}J_{^{119}\text{Sn,P}} = 107 \text{ Hz}$).

3: $Ph_3SnP_3(C_6H_8)$ (2; 120 mg, 0.229 mmol) was dissolved in THF (7 mL) and the solution was frozen. Wilkinson's catalyst (212 mg, 0.23 mmol) was also dissolved in THF (7 mL) and the solution frozen. Upon thawing, the solution of Ph₃SnP₃(C₆H₈) was added to the solution of Wilkinson's catalyst with stirring. The reaction mixture was allowed to stir at 20°C for 2 h, after which time the reaction mixture was taken to dryness under reduced pressure. The resulting brown residue was stirred in hexane (10 mL) for 20 min and then was dried again under reduced pressure. The resulting brown powder was stirred vigorously in Et₂O for 30 min, and thereafter collected by filtration as a sand-colored solid and a colorless filtrate. The filtrate was taken to dryness, resulting in a white powder, which was a mixture of Ph₃SnCl and a small quantity of PPh₃. The sand-colored solid was dried to a constant mass of 157 mg (70 % crude yield). The solids were dissolved in CH₂Cl₂ (2 mL) into which Et₂O was slowly diffused at -35 °C, to furnish X-ray quality crystals of 3 (60% yield; 135 mg, 0.137 mmol). Elemental analysis (%) calcd for C₅₄H₄₅P₆Rh: C 66.00, H 4.61, P 18.91; found C 65.63, H 4.41, P 18.38. ¹H NMR ([D₈]THF, 500 MHz): $\delta = 5.14$ (t, 6H, $^1J_{\rm H,H} = 7$ Hz), 5.23 (br m, 6H), 5.36 ppm (t, 3H, ${}^{1}J_{HH} = 7$ Hz). ${}^{13}C$ NMR ([D₈]THF, 126 MHz): $\delta = 129.3$ (s), 129.4 (s), 133.1 (s), 135.3 ppm (m). 31 P NMR ([D₈]THF, 202 MHz): $\delta = 34$ $(dq, {}^{1}J_{103}_{Rh,P} = 150 \text{ Hz}, {}^{2}J_{PP} = 16 \text{ Hz}), -187 \text{ ppm } (dq, {}^{1}J_{103}_{Rh,P} = 32 \text{ Hz},$ $^{2}J_{PP} = 16 \text{ Hz}$). MALDI-TOF MS: m/z 982.1004.

Received: November 24, 2009 Published online: January 28, 2010

Keywords: coordination modes · phosphorus · rhodium · structure elucidation · transfer reagents

- [1] N. A. Piro, C. C. Cummins, J. Am. Chem. Soc. 2008, 130, 9524– 9535.
- [2] N. A. Piro, C. C. Cummins, Angew. Chem. 2009, 121, 952–956;Angew. Chem. Int. Ed. 2009, 48, 934–938.
- [3] B. M. Cossairt, M. C. Diawara, C. C. Cummins, *Science* 2009,
- [4] O. Back, G. Kuchenbeiser, B. Donnadieu, G. Bertrand, Angew. Chem. 2009, 121, 5638-5641; Angew. Chem. Int. Ed. 2009, 48, 5530-5533.
- [5] B. M. Cossairt, C. C. Cummins, J. Am. Chem. Soc. 2009, 131, 15501–15511.
- [6] J. R. Clark, A. L. Pulvirenti, P. E. Fanwick, M. Sigalas, O. Eisenstein, I. P. Rothwell, *Inorg. Chem.* 1997, 36, 3623–3631.
- [7] Please see the Supporting Information for additional details.
- [8] F. S. Kocak, P. Y. Zavalij, Y. F. Lam, B. W. Eichhorn, *Chem. Commun.* 2009, 4197–4199.
- [9] T. H. Whitesides, D. L. Lichtenberger, R. A. Budnik, *Inorg. Chem.* 1975, 14, 68-73.
- [10] F. A. Cotton, Inorg. Chem. 2002, 41, 643-658.

Communications

- [11] B. M. Cossairt, C. C. Cummins, *Inorg. Chem.* 2008, 47, 9363–9371.
- [12] B. M. Cossairt, C. C. Cummins, Angew. Chem. 2008, 120, 8995 8998; Angew. Chem. Int. Ed. 2008, 47, 8863 – 8866.
- [13] V. M. Visciglio, P. E. Fanwick, I. P. Rothwell, *Acta. Crystallogr. Sect. C.* 1994, 50, 900–902.
- [14] J. D. Masuda, W. W. Schoeller, B. Donnadieu, G. Bertrand, Angew. Chem. 2007, 119, 7182-7185; Angew. Chem. Int. Ed. 2007, 46, 7052-7055.
- [15] J. D. Masuda, W. W. Schoeller, B. Donnadieu, G. Bertrand, J. Am. Chem. Soc. 2007, 129, 14180-14181.
- [16] F. A. Cotton, G. Wilkinson, C. A. Murillo, M. Bochmann, Advanced Inorganic Chemistry, 6th ed., Wiley, New York, 1999.
- [17] H. Schumann, E. Von Deuster, J. Organomet. Chem. 1972, 40, C27 – C28.
- [18] H. Schumann, Angew. Chem. 1969, 81, 970 983; Angew. Chem. Int. Ed. Engl. 1969, 8, 937 – 950.

- [19] L. Weber, Chem. Rev. 1992, 92, 1839-1906.
- [20] A. L. Spek, J. Appl. Crystallogr. 2003, 36, 7-13.
- [21] M. DiVaira, L. Sacconi, Angew. Chem. 1982, 94, 338-351; Angew. Chem. Int. Ed. Engl. 1982, 21, 330-342.
- [22] D. J. Mindiola, C. C. Cummins, Angew. Chem. 1998, 110, 983 986; Angew. Chem. Int. Ed. 1998, 37, 945 947.
- [23] The assignment of rhodium(III) in complex 3 is in recognition of this as a d⁶, quasi-octahedral species (see Supporting Information for a calculated MO diagram) that is isolobal with other rhodium(III) derivatives, such as [Rh{C₆H₄(PPh₂)₂}₃]. See reference [24].
- [24] M. A. Bennett, S. K. Bhargava, M. Ke, A. C. Willis, J. Chem. Soc. Dalton Trans. 2000, 3537 – 3545.
- [25] CCDC 745202 (2) and 745203 (3) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.